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Abstract: Let T C R be a periodic time scale in shifts 4 with period P € (top,00)r and ¢ty € T is nonnegative
and fixed. By using a fixed point theorem of strict-set-contraction, some criteria are established for the existence
of positive periodic solutions in shifts d1 for a neutral delay logistic equation on time scales of the form

n

2B(t) = 2(t) |r(t) = a(t)e(t) = Y bi(0)e(0-(7,t) = D ()2 (- (&, 1)) | .t € T.
j=1

Jj=1
Finally, two numerical examples are presented to illustrate the feasibility and effectiveness of the results.

Key—Words: Positive periodic solution; Neutral delay logistic equation; Strict-set-contraction; Shift operator; Time
scale.

1 Introduction dynamic equations. Up to now, there are only a few re-
sults concerning periodic solutions of neutral dynam-
ic equations on time scales; see, for example, [15,16].
In these papers, authors considered the existence of
periodic solutions for dynamic equations on time s-

In 1993, Kuang [1] proposed an open problem (open
problem 9.2) to obtain sufficient conditions for the ex-
istence of positive periodic solutions to

2 (t) = x(t) [a(t) — B(t)z(t) — b(t)z(t — 7(t)) cales satisfying the condition “’there exists a w > 0
, such that t + w € T,Vt € T.” Under this condi-
—e(t)2(t — T(t))] ’ tion all periodic time scales are unbounded above and
where a, (3, b, ¢, T are nonnegative continuous period- below. However, there are many time scales such as
ic functions. Since then, different classes of neutral ¢ ={q" :nc€ZyuU{0}and VN = {{/n : n € N}
functional differential and difference equations have which do not satisfy the condition. Adivar and Raf-
been extensively studied; see, for example, [2-5]. foul introduced a new periodicity concept on time s-
However, in the natural world, there are many cales which does not oblige the time scale to be closed
species whose developing processes are both contin- under the operation ¢ & w for a fixed w > 0. They de-
uous and discrete. Hence, using the only differential fined a new periodicity concept with the aid of shift
equation or difference equation can’t accurately de- operators 6+ which are first defined in [17] and then
scribe the law of their developments, see, for exam- generalized in [18].
ple, [6,7]. Therefore, there is a need to establish cor- Recently, by using the cone theory techniques,
respondent dynamic models on new time scales. many researchers studied the existence of positive pe-
The theory of calculus on time scales (see [8] and riodic solutions in shifts 6+ for some nonlinear first-
references cited therein) was initiated by Stefan Hilger order functional dynamic equations on time scales;
[9] in order to unify continuous and discrete analy- see [19-22]. However, to the best of our knowledge,
sis. Therefore, the study of dynamic equations on there are few papers published on the existence of pos-
time scales, which unifies differential, difference, h- itive periodic solutions in shifts §+ for a neutral func-
difference, and g-differences equations and more, has tional differential equation on time scales.
received much attention; see [10-14]. The main purpose of this paper is by using a
The existence problem of periodic solutions is an fixed point theorem of strict-set-contraction to estab-
important topic in qualitative analysis of functional lish some criteria to guarantee the existence of pos-
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itive periodic solutions in shifts 6+ of the following
neutral delay logistic equation on time scales

() =

" [r(t) ~ a(t)a(t)
_ Z b
_ ch

where ¢ € T, T C R be a periodic time scale in shift-
s 01 with period P € [tp,00)r and tg € T is non-
negative and fixed; r,a,b;,¢; € C(T,(0,00))(j =
1,2,...,n) are A-periodic in shifts 6+ with period
w; 75,&( = 1,2,...,n) are fixed if T = R and
7;,&; € [P, 00)r if T is periodic in shifts 6+ with pe-
riod P.
For convenience, we introduce the notation

—(75,1))

éj? )) ’ (1)

0= er(to, 5$(t0)),

J), 1" = te[to,inf(to)]qr Uy

sup
tG[to,5i (to)]qr

where f is a continuous w-periodic function in shifts
Ot.
Throughout this paper, we assume that

(Hl) 0= er(to,(Sﬁ(to)) <1;

(H) ©alt) + é b, (1)

— 3 () >0
=1

(H3) (1+r™ )?g > sup {a(t)—i— >
te[to,(sw(to)]'ﬂ‘ 7j=1

inf {ea(t) + fj Ob;(t) —
to)lT j=1

t€to,04 (
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2 Preliminaries

Let T be a nonempty closed subset (time scale) of R.
The forward and backward jump operators o, p : T —
T and the graininess j : T — R™ are defined, respec-
tively, by

o(t)=inf{s € T:s > t},
p(t) =sup{seT:s <t}
w(t) =o(t) —t.

A point t € T is called left-dense if ¢ > inf T
and p(t) = t, left-scattered if p(t) < ¢, right-dense if
t < sup T and o(t) = t, and right-scattered if o'(¢) >
t. If T has a left-scattered maximum m, then TF =
T\{m}; otherwise T* = T. If T has a right-scattered
minimum m, then Ty, = T\{m}; otherwise T} = T.

A function f : T — R is right-dense continuous
provided it is continuous at right-dense point in T and
its left-side limits exist at left-dense points in T. If f
is continuous at each right-dense point and each left-
dense point, then f is said to be a continuous function
on T. The set of continuous functions f : T — R is
denoted by C(T) = C(T,R). The set of functions f :
T — R that are differentiable and whose derivative is
continuous is denoted by C(T) = C1(T, R).

For the basic theories of calculus on time scales,
see [8].

A function p : T — R is called regressive pro-
vided 1 + p(t)p(t) # 0 for all t € T*. The set of all
regressive and rd-continuous functions p : T — R is
denoted by R = R(T,R). If r is a regressive func-
tion, then the generalized exponential function e, is
defined by

ertt) = { | t 6ur ()T}

for all s,t € T, with the cylinder transformation

Log(1+hz) if h 0
En(z) = R ; _# ’
z if h=0.
Let p,g : T — R be two regressive functions,
define
p
pBq = ptqt+upq, Op = —7———, pSq = pH(Sq).
L+ pp

Lemma 1. [8] Assume that p,q : T — R be two re-
gressive functions, then

(i) eo(t,s) = 1and e,(t,t) = 1;
(i) ep(a(t), s) = (1 4 u(t)p(t))ep
(iii) ep(t, s) = é 5 = €o p(5,1);
(iv) ep(t, s)e ( ) = ep(tr);

V) (eep(t, $)) = (©p)()eayl(t, 5)-

(t,5);
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The following definitions, lemmas about the shift
operators and the new periodicity concept for time s-
cales which can be found in [20,23].

Let T* be a non-empty subset of the time scale
T and ¢y € T* be a fixed number, define operators
0y : [to,00) x T* — T*. The operators d; and J_
associated with ty € T* (called the initial point) are
said to be forward and backward shift operators on
the set T*, respectively. The variable s € [tg, c0)T in
9+ (s, t) is called the shift size. The value (s, t) and
d_(s,t) in T* indicate s units translation of the term
t € T* to the right and left, respectively. The sets

Dy = {(s,t) € [tg,00)T x T* : d(s,t) € T*}

are the domains of the shift operator ., respectively.
Hereafter, T* is the largest subset of the time scale T
such that the shift operators 0 : [tg, 00) x T* — T*
exist.

Definition 2. [23] (Periodicity in shifts 61.) Let T be a
time scale with the shift operators d1 associated with
the initial point tg € T*. The time scale T is said to
be periodic in shifts d+ if there exists p € (tg, 00)T~
such that (p,t) € Dy forall t € T*. Furthermore, if

P = inf{p S (t(), OO)']T* : (p,t) €04,V € T*} 7'5 to,

then P is called the period of the time scale T.

Definition 3. [23] (Periodic function in shifts d1) Let
T be a time scale that is periodic in shifts 6+ with
the period P. We say that a real-valued function f
defined on T* is periodic in shifts 6 if there exists w €
[P, 00)T= such that (w,t) € D4 and f(6%.(t)) = f(t)
for allt € T* where % := 0+(w,t). The smallest
number w € [P, 00)1+ is called the period of f.

Definition 4. [23] (A-periodic function in shifts 0+ )
Let T be a time scale that is periodic in shifts 0+ with
the period P. We say that a real-valued function f
defined on T* is A-periodic in shifts 0 if there exists
w € [P, 00)r+ such that (w,t) € Dy forall t € T*,
the shifts 04 are A-differentiable with rd-continuous
derivatives and (0% (t))02%(t) = f(t) for all t €
T*, where 64 := 0+ (w,t). The smallest number w €
[P, 00)T~ is called the period of f.

Lemma 5. [23] 64 (o(t)) = o(84(t)) and 6“(o(t))
=0 (0“(t)) forall t € T*.

Lemma 6. [20] Let T be a time scale that is peri-
odic in shifts 1+ with the period P. Suppose that
the shifts 04 are A-differentiable on t € T* where
w € [P,00)r+ and p € R is A-periodic in shifts 61
with the period w. Then

(1) ep(0L(t), 0% (to)) = ep(t,to) fort, to € T*,
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(1) ep(3%(8),0(52(5))) = ep(t 0(s)) = 250
fort,s € T*

Lemma 7. [23] Let T be a time scale that is peri-
odic in shifts 0+ with the period P, and let f be
a A-periodic function in shifts 0L with the period
w € [P, 00)r+. Suppose that f € Cpq(T), then

o¢ (1)

t
f(s)As = /
to 5i(t0)

Lemma 8. [8] Suppose that r is regressive and f :
T — R is rd-continuous. Lettg € T, yg € R, then the
unique solution of the initial value problem

f(s)As.

y® =r(t)y + f(t), y(to) = vo

is given by

y(t) = ex(t, to)uo + / er(t, 0(7) f (1) AT,

to
Set
CY = {r:x e C(T,R),z(0%(t)) = z(t)}
with the norm defined by |z|p = sup  |z(t)],

te[to,ﬁﬁ(to)h‘
and
CL = {w: @ € CU(T,R), 2(3(t)) = 2(t))
with the norm defined by |z|; = max{|z|o, |2%|o}.
Then C? and C, are all Banach spaces.

By using Lemmas 1, 5 and 8, we can obtain the
following lemma.

Lemma 9. z(t) € C is an w-periodic solution in
shifts 0+ of system (1) if and only if z(t) is an w-
periodic solution in shifts 6+ of

z(t) = /téi(t) G(t,s)x(s) [a(s)w(s)
+Zn:bj(s)x(5—(rj,s))
=
+fjlcj<s)wﬁ<6_<fj,s>>}m, @
p
where
Gt ) = —cr(t:90)

1 — er(to, 0% (to))
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It is easy to verify that the Green’s function
G(t, s) satisfies the property

©

1
16 < G(t,s) < Y [t 05 ®)]r,  (3)

where © := e, (to, 0% (to)). By Lemma 6, we have
G(05(t),0%(s)) = G(L, 5), ©)

where t € T*, s € [t, 0% (t)]r.

In order to obtain the existence of periodic solu-
tions in shifts 6+ of system (1), we first make the fol-
lowing preparations:

Let E be a Banach space and K be a cone in F.
The semi-order induced by the cone K is denoted by
7<” thatis, z < yifand only if y — 2z € K. In
addition, for a bounded subset A C E, let ag(A)
denote the (Kuratowski) measure of non-compactness
defined by

ag(A) = inf {d > 0 : there is a finite number of
subsets A; C A, such that A = UAi

and diam(A;) < d},

where diam(A4;) denotes the diameter of the set A;.

Let £/, ' be two Banach spaces and D C F, a
continuous and bounded map ® : QO — F is called
k-set contractive if for any bounded set S C D we
have

ap(®(S9)) < kag(9).

® is called strict-set-contractive if it is k-set-
contractive for some 0 < k£ < 1.

Lemma 10. [24,25] Let K be a cone of the real Ba-
nach space X and K, p = {x € K|r < z < R}
with R > r > 0. Suppose that ® : K, p — K is
strict-set-contractive such that one of the following t-
wo conditions is satisfied:

i) @z £ x, Vr € K, ||z|| = r and Pz # z, Yz €

(it) Pz # x, Vo € K, ||z|| = r and Pz £ z, Vx €
K, |lz]] = R

Then ® has at least one fixed point in K, g.

Define K, a cone in C’Uld, by

K ={z € CL:x(t) > Olz|1,t € [to, 6% (to)]r},
)
and an operator ® : K — C1 by

8L(t)
(Px)(t) = /t G(t,s)x(s) [a(s)x(s)
+Zb _(75,9))
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+ch _(&,9))|A 6)

In the following, we will give some lemmas con-
cerning K and @ defined by (5) and (6), respectively.

(Hs) hold.
(i) IfrM <1, then ® : K — K is well defined.

(ii) If (Hy) holds and r™
well defined.

Proof. Forany z € K, itis clear that z € C*(T,R).
In view of (6), for t € T, we obtain

() (65 (1))
63 (64(t))
—/ G(6%(t), s)x(s) {a(S)x(S)
6“()
+Zb 7’]7 ))
+ch

6$()
_ / G54 (1), 6% () (5% (u))

Lemma 11. Assume that (H1) —

>1,then® : K — K is

69 as

. [a(aﬂu))aﬁ%u)x(éﬂu))
+ Z b; (8% (u

+Zb (75, u))

+ZCJ ~(&u ))}
= (‘I’fﬂ)( ),
that is, (®x)(0%(t)) = (Pz)(t),t € T. So Pz € C..

In view of (H3), forx € K, t € [to, 0% (to)]T, we have

+Zb _(75,1))

+Y ()2 (6- (1))
j=1
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> (t) + > bj(t)2(d-(75,1) +Zb (8% (1)02¢ ()2 (6 (75, 5. (1)))
j=1
- 301660 +Zc] 3 (0)38 (126 (& 0(1)
> (t)|z> |1 + Z Ob;(t)|z2 |1 —G(t, )z(t) [a(t)m(t) +) bi(t)x(0-(7,1)
Jj=1 j=1
~Y ek, +ch 600 + i@
j=1
= [outy + S ent) -3 0] ) = r)@a)(0) - 2(0) | a(0)a(0
j=1 j=1 "
> 0. ) +> bi(t)z(o-
Therefore, for x € K,t € [to, 6% (to)]r, we find jzl
R £ X et (6.0)| ©)
|Pzlp < 1—@/15 x(s) [a(s)x(s) j=1
+ i bi(s)x(5_ (7, 5)) It follows from (7) and (9) that if (®z)?(¢) > 0, then
j=1
- zn:cj(S)xA(é_(fﬁ S))} As (22)2(0) < r(®)(@a)() < (2)(1) < ((I)x)itl)(i)
i=1 On the other hand, from (8), (9) and (H3), if (®x)> (t)
and < 0, then
5 (1)
(®x)(t) > % /t (s) [a(s)x(s) —(®)2(1) )
" = z(t) ja(t)z(t) + ) bj)z(0—(7),1))
+D_bi(5)2(0-(75,5)) [ Z
Jj=1 n
" +2.6 —(&, 1)) —r()(@x)(2)
+ ei()a™(6- (g, 3))} As ; ]
7j=1 n n
84 (to) < |z a@®) +) bit)+) ¢(t)]| —r™(dz)(t)
- e[ e [%)x(s) 1 [ 200 2 ]
. to . 02 3¢ (to)
+ Y (0)0-(039) < (1o Zgelt [ [outs
+» Ob,( ci(s)|As —r"(dx)(t)
- Zc] (69| s 2,0 Z )
5“’(t0)
> 6l ® = [ 2 el elhats)
Now, we show that (®z)2(t) > O|dz|;, , " "
0% (to)]r. From (6),twet}2ave) (1) = Otk Ll +z;9’:v|1bj(8) - Z |x|1Cj(S)] As
() (¢) —r™(@x)(t)
w w w Aw w m %o
= G(t,05(1)=(0%(2)) | a(0% (1)) 05 (1) 2 (05 (1)) < (L )/t G(t,s)x(s) [a(s)x(s)
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+ij

n

_Zcﬂ

a9 (t)
< (IT4r™) /t G(t,s)z(s) [a(s)x(s)
+ ibj

n

+ch

=(1 +7“m)(<1>$)( )
= (®x)(1).

It follows from (10) and (11) that |(®x)2 |y < |®xo.
So [®x|; = |Pz|p. By (8), we have (Px)(t) >
©|®z|;. Hence, Pz € K. The proof of () is com-
plete.

(3) In view of the proof of (i), we only need to
prove that (®x)2(¢) > 0 implies

(2)3(t) < (D)(t).

From (7), (9), (H2) and (Hy,), we obtain

—(75,9))

(&5 >>@ s — (@) (1)

—(75,9))

(&5 >>] s — (@) (1)

—r"(Dx)(t)
(1)

(@) (1)
< r(t)(®2) (1) - Oz, {au)m(t)
+Zb _(75,1))
—ch e (6 (¢, m]
< @)
—6luf? [a(t) S q(t)]
j=1 j=1
rM_1q 6% (to)
< M@0 - Oleligr g [ oo
+ ij(s) + ch(s)] As
j=1 j=1
< rM(tﬁw)(t)
5 (1)
—<rM—1>/t L glelsatolel
Z |:z:]1+Zc] \$|1]A3
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IN
5

/E
R
&
=

IA
5
/—? it
R
o
=

+ZCJ

= (‘1’56)( ) = (M = 1)(@x)(1)
— () (t).
The proof of (ii) is complete. O

Lemma 12. Assume that (Hy) — (

M
Rch
7j=1

Hs) hold and

(3) Ifr™ < 1, then ® : K(\Qgr — K is strict-set-
contractive,

(43) If (Hy) holds and r™ > 1, then ® : K Qg —
K is strict-set-contractive,
where Qp = {x € CL : |z|; < R}.

Proof. We only need to prove (4), since the proof of
(79) is similar. It is easy to see that ® is continu-
ous and bounded. Now we prove that ac1 (2(5)) <

n —
(R 21 c%)a%(S) for any bounded set S C Qg.
J:
thi}) (S)
n
< (R > c?/[ ) 7, there is a finite family of subsets
=1

Let n = Then, for any positive number

{S;} satisfying S = |, S; with diam(S;) < n + «.
Therefore

|t —yl1 <m+e forany z,y €S, (12)
As S and S; are precompact in CY, it follows that
there is a finite family of subsets {.5;;} of .S; such that
SZ = Uj Sij and

(13)

|z —ylo < e for any z,y € S;;.
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In addition, for any € S and t € [to, 6% (to)]T, we
have

33(t)
@0 = [ Glse(s) a1t

+3 i)zt (6- (&, t))] '
j=1

n
< MH+ R+ R?Y (0} + o).
j=1

Applying the Arzela-Ascoli Theorem, we know
that ®(S) is precompact in CY. Then, there is a fi-
nite family of subsets {S;;;} of S;; such that S;; =

Uk Sijk and
|®x — Dylg < e for any x,y € Sjjp. (14)

From (7), (9) and (12)-(14) and (H>), for any z,y €
Sijk, we obtain

|(@x)> — (Py
- te[to?;gzto)h‘ {
—a(t) [a(t)x(t) + Z bi(t)z(5_
+ Z cj

&, >>]
() [a<t>y<t> £ b OuE-(.0)
j=1

#2060 |}

J=1

)20

r(0)(@x)(t) —r(t)(Py)(1)
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sup  {[r(t)[(®z)(t) — (@y)()]|}
tefto, 0% (to)lr
" te[toﬁﬁ%to)h‘ { =t [a(t)l'(t)
+ i bi(t)z (-
+ Z 005510

+ sup {
t€[to,0% (to)lr

m{

—f—Zb —(75,1)

u(t) [a<t>y<t>

te(to,0% (

Moy R {aole - v00)

sup
te [to,éi (to)]ﬂ*

+> bi(t)|x(0-(75,1))
j=1

+> ¢z (5 (&, 1) —
j=1

Y6 1))
(5—(€j7t))l}

+e sup

tefto,d% (to)lr
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3 el 60

j=1

< rMa—l—Rs(aM—Fijw)
j=1
—I—R(n—i—s)(Zc%)

Jj=1

—I—R5<aM —i-zbéw —i—Zc;-V‘[)
j=1 j=1
= (Ran%) + He,
j=1

15)

n n
+2Ra™ + 2R Zlbj.” +2R Zlc;M.
j= J=
From (14) and (15) we have

n
oo-agh < (RY e o+ fre
j=1

for any x,y € S;ji. As ¢ is arbitrary small, it follows
that

where H = rM

Oécl

<RZ )acl

Therefore, ® is strict-set-contractive. The proof is
complete. O

3 Main Result

Our main result of this paper is as follows:

Theorem 13. Assume that (Hy) — (H3s), (Hs) hold.

(i) IfrM < 1, then system (1) has at least one posi-
tive w-periodic solution in shifts 0.

(43) If (Hy) holds and v™ > 1, then system (1) has
at least one positive w-periodic solution in shifts
0.

Proof. We only need to prove (i), since the proof of
(44) is similar. Let R = (1H ©)
then we have 0 < r < R. From Lemmas 11 and
12, we know that ® is strict-set-contractive on K. g.
In view of (9), we see that if there exists z* € K
such that ®z* = z*, then ™ is one positive w-periodic
solution in shifts §+ of system (1). Now, we shall
prove that condition (i¢) of Lemma 10 holds.

First, we prove that ®x # z, Vo € K, |z|; = r.
Otherwise, there exists € K, ||y = r such that

E-ISSN: 2224-2880
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$x > z. So || > 0 and = — = € K, which implies

that
(Pz)(t) — x(t) > O|Pz — |1 > 0,
)

for any t € [to, 0% (to)]r-
Moreover, for t € [tg, 8% (to)]T, we have

(16)

84 (¢)
(Px)(t) = /t G(t,s)x(s)[a(s)x(s)

+Zb

-1-20]
6% (to)

1 _1 Sl / )+ Y0500

o]
j=1

—(75,8))

6] as

IN

r
- 1-0
< Olzlp. 17
In view of (16) and (17), we have

‘x|0 < |(I)LU‘ < @|JJ’0 < ’33|0,

which is a contradiction. Finally, we prove that ®x £
xz, Vo € K, |z|; = R also holds. For this case, we
only need to prove that

br£ar zeK,|z)i =R

Suppose, for the sake of contradiction, that there ex-
ists + € K and |z[; = R such that &z < =z.
Thus © — &= € K \ {0}. Furthermore, for any
t e [to, 5$(t0)]11‘, we have

(t) —

In addition, for any ¢ € [to, d¥ (to)]T, we find

(®z)(t) > Olz — dx|; > 0. (I8)

@) = [ 69w [a<s>x<s>
+Zb (15, 9))
+Zc] &) as

>

@ N 6% (to)
m@!wh /to [@a(s)

+ Z O©b;(s) — Z cj(s)} As
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@2
= 'R?
1-0 R

= R

(19)
From (18) and (19), we obtain
|z| > |Px|o > R,

which is a contradiction. Therefore, conditions (7) and
(7i) hold. By Lemma 10, we see that ¢ has at least one
nonzero fixed point in K. Therefore, system (1) has
at least one positive w-periodic solution in shifts §.
The proof is complete. O

4 Numerical examples

Example 1. Consider the following system on time
scales

2 t
) = )| TS — (5 - 2sinwt)a()
—(2 +sinnt)z(6-(2,1))
1-— t
et 2| o)
20
Obviously,
2
T = m, a =5 — 2sinmt,
8
. 1 —cosmt
by =2+sin7t, g = —

Let T = R, tg = 0, then 0% () = ¢t + 2. Itis
easy to verify r(t), a(t), b1(t), c1(t) are A-periodic in
shifts 61 with period w = 2. By a direct calculation,
we can get

©=c¢3, T =8.3914,

inf {@a(t) + @bl(t) — Cl(t)} = 2.3261,
te0,2]1

sup {a(t) +b1(t) +c1(t)} = 8.0512,

tel0,2]r
@2
1 m I' = 8.8264
( + r )1 _ @ )
and o
1- M
Wcl = 0.0128.

Hence, (Hy)— (H3), (Hs) hold and 7™ < 1. Accord-
ing to Theorem 13, when T = R, system (20) has at
least one positive 2-periodic solution in shifts ¢..
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Example 2. Consider the following system on time
scales

1 2
A _ - _ = _
A0 = a0)]5; - Falt) - Jal0-(4.1)
L A
- (4 21
g 0-(4.0)] e
Obviously,
1 2 3 1
r=—,a=—-,bj=—-,c=—.
ot t t 20t

Let T = 2o, ¢ty = 1, then §%(¢) = 4t. Itis
easy to verify r(t), a(t), b1(t), c1(t) are A-periodic in
shifts 64 with period w = 4. By a direct calculation,
we can get

O = 0.6818, I' = 4.6566,

inf {Oa(t) + Oby(t) — c1(t)} = 0.8022,
te(1,4]t

sup {a(t) + b1(t) + c1(t)} = 5.0500,
te[l 4]y

2
I' ="7.1429
@ )

my ©
(1+r )1

and

1-0 4

WCI = 0.0073.
Hence, (H;)— (H3), (Hs) hold and r™ < 1. Accord-
ing to Theorem 13, when T = oNo system (21) has at
least one positive 4-periodic solution in shifts d..

5 Conclusion

This paper is concerned with the existence of positive
periodic solutions in shifts d. for a neutral delay lo-
gistic equation on time scales. Based on the theory
of calculus on time scales, by using a fixed point the-
orem of strict-set-contraction, some existence results
are established for the system.

The method used in this paper is the same in [3],
but the results obtained in this paper extend and unify
periodic differential, difference, h-difference and g¢-
difference equations and more by a new periodicity
concept on time scales.
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