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Abstract: Let T ⊂ R be a periodic time scale in shifts δ± with period P ∈ (t0,∞)T and t0 ∈ T is nonnegative
and fixed. By using a fixed point theorem of strict-set-contraction, some criteria are established for the existence
of positive periodic solutions in shifts δ± for a neutral delay logistic equation on time scales of the form

x∆(t) = x(t)

[
r(t)− a(t)x(t)−

n∑
j=1

bj(t)x(δ−(τj , t))−
n∑

j=1

cj(t)x
∆(δ−(ξj , t))

]
, t ∈ T.

Finally, two numerical examples are presented to illustrate the feasibility and effectiveness of the results.

Key–Words: Positive periodic solution; Neutral delay logistic equation; Strict-set-contraction; Shift operator; Time
scale.

1 Introduction
In 1993, Kuang [1] proposed an open problem (open
problem 9.2) to obtain sufficient conditions for the ex-
istence of positive periodic solutions to

x′(t) = x(t)
[
a(t)− β(t)x(t)− b(t)x(t− τ(t))

−c(t)x′(t− τ(t))
]
,

where a, β, b, c, τ are nonnegative continuous period-
ic functions. Since then, different classes of neutral
functional differential and difference equations have
been extensively studied; see, for example, [2-5].

However, in the natural world, there are many
species whose developing processes are both contin-
uous and discrete. Hence, using the only differential
equation or difference equation can’t accurately de-
scribe the law of their developments, see, for exam-
ple, [6,7]. Therefore, there is a need to establish cor-
respondent dynamic models on new time scales.

The theory of calculus on time scales (see [8] and
references cited therein) was initiated by Stefan Hilger
[9] in order to unify continuous and discrete analy-
sis. Therefore, the study of dynamic equations on
time scales, which unifies differential, difference, h-
difference, and q-differences equations and more, has
received much attention; see [10-14].

The existence problem of periodic solutions is an
important topic in qualitative analysis of functional

dynamic equations. Up to now, there are only a few re-
sults concerning periodic solutions of neutral dynam-
ic equations on time scales; see, for example, [15,16].
In these papers, authors considered the existence of
periodic solutions for dynamic equations on time s-
cales satisfying the condition ”there exists a ω > 0
such that t ± ω ∈ T, ∀t ∈ T.” Under this condi-
tion all periodic time scales are unbounded above and
below. However, there are many time scales such as
qZ = {qn : n ∈ Z} ∪ {0} and

√
N = {

√
n : n ∈ N}

which do not satisfy the condition. Adıvar and Raf-
foul introduced a new periodicity concept on time s-
cales which does not oblige the time scale to be closed
under the operation t± ω for a fixed ω > 0. They de-
fined a new periodicity concept with the aid of shift
operators δ± which are first defined in [17] and then
generalized in [18].

Recently, by using the cone theory techniques,
many researchers studied the existence of positive pe-
riodic solutions in shifts δ± for some nonlinear first-
order functional dynamic equations on time scales;
see [19-22]. However, to the best of our knowledge,
there are few papers published on the existence of pos-
itive periodic solutions in shifts δ± for a neutral func-
tional differential equation on time scales.

The main purpose of this paper is by using a
fixed point theorem of strict-set-contraction to estab-
lish some criteria to guarantee the existence of pos-
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itive periodic solutions in shifts δ± of the following
neutral delay logistic equation on time scales

x∆(t) = x(t)

[
r(t)− a(t)x(t)

−
n∑

j=1

bj(t)x(δ−(τj , t))

−
n∑

j=1

cj(t)x
∆(δ−(ξj , t))

]
, (1)

where t ∈ T, T ⊂ R be a periodic time scale in shift-
s δ± with period P ∈ [t0,∞)T and t0 ∈ T is non-
negative and fixed; r, a, bj , cj ∈ C(T, (0,∞))(j =
1, 2, . . . , n) are ∆-periodic in shifts δ± with period
ω; τj , ξj(j = 1, 2, . . . , n) are fixed if T = R and
τj , ξj ∈ [P,∞)T if T is periodic in shifts δ± with pe-
riod P .

For convenience, we introduce the notation

Θ := er(t0, δ
ω
+(t0)),

Γ :=
∫ δω+(t0)
t0

[
Θa(s) +

n∑
j=1

Θbj(s)−
n∑

j=1
cj(s)

]
∆s,

Π :=
∫ δω+(t0)
t0

[
a(s) +

n∑
j=1

bj(s) +
n∑

j=1
cj(s)

]
∆s,

and

fM = sup
t∈[t0,δω+(t0)]T

f(t), fm = inf
t∈[t0,δω+(t0)]T

f(t),

where f is a continuous ω-periodic function in shifts
δ±.

Throughout this paper, we assume that

(H1) Θ := er(t0, δ
ω
+(t0)) < 1;

(H2) Θa(t) +
n∑

j=1
Θbj(t)−

n∑
j=1

cj(t) ≥ 0;

(H3) (1+ rm)Θ
2Γ

1−Θ ≥ sup
t∈[t0,δω+(t0)]T

{
a(t)+

n∑
j=1

bj(t)+

n∑
j=1

cj(t)

}
;

(H4)
Π(rM−1)
Θ(1−Θ) ≤ inf

t∈[t0,δω+(t0)]T

{
Θa(t) +

n∑
j=1

Θbj(t)−

n∑
j=1

cj(t)

}
;

(H5)
1−Θ
Θ2Γ

n∑
j=1

cMj < 1.

2 Preliminaries

Let T be a nonempty closed subset (time scale) of R.
The forward and backward jump operators σ, ρ : T →
T and the graininess µ : T → R+ are defined, respec-
tively, by

σ(t) = inf{s ∈ T : s > t},
ρ(t) = sup{s ∈ T : s < t}
µ(t) = σ(t)− t.

A point t ∈ T is called left-dense if t > inf T
and ρ(t) = t, left-scattered if ρ(t) < t, right-dense if
t < supT and σ(t) = t, and right-scattered if σ(t) >
t. If T has a left-scattered maximum m, then Tk =
T\{m}; otherwise Tk = T. If T has a right-scattered
minimum m, then Tk = T\{m}; otherwise Tk = T.

A function f : T → R is right-dense continuous
provided it is continuous at right-dense point in T and
its left-side limits exist at left-dense points in T. If f
is continuous at each right-dense point and each left-
dense point, then f is said to be a continuous function
on T. The set of continuous functions f : T → R is
denoted by C(T) = C(T,R). The set of functions f :
T → R that are differentiable and whose derivative is
continuous is denoted by C1(T) = C1(T,R).

For the basic theories of calculus on time scales,
see [8].

A function p : T → R is called regressive pro-
vided 1 + µ(t)p(t) ̸= 0 for all t ∈ Tk. The set of all
regressive and rd-continuous functions p : T → R is
denoted by R = R(T,R). If r is a regressive func-
tion, then the generalized exponential function er is
defined by

er(t, s) = exp

{∫ t

s
ξµ(τ)(r(τ))∆τ

}
for all s, t ∈ T, with the cylinder transformation

ξh(z) =

{
Log(1+hz)

h if h ≠ 0,
z if h = 0.

Let p, q : T → R be two regressive functions,
define

p⊕q = p+q+µpq, ⊖p = − p

1 + µp
, p⊖q = p⊕(⊖q).

Lemma 1. [8] Assume that p, q : T → R be two re-
gressive functions, then
(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);
(iii) ep(t, s) = 1

ep(s,t)
= e⊖p(s, t);

(iv) ep(t, s)ep(s, r) = ep(t, r);
(v) (e⊖p(t, s))

∆ = (⊖p)(t)e⊖p(t, s).
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The following definitions, lemmas about the shift
operators and the new periodicity concept for time s-
cales which can be found in [20,23].

Let T∗ be a non-empty subset of the time scale
T and t0 ∈ T∗ be a fixed number, define operators
δ± : [t0,∞) × T∗ → T∗. The operators δ+ and δ−
associated with t0 ∈ T∗ (called the initial point) are
said to be forward and backward shift operators on
the set T∗, respectively. The variable s ∈ [t0,∞)T in
δ±(s, t) is called the shift size. The value δ+(s, t) and
δ−(s, t) in T∗ indicate s units translation of the term
t ∈ T∗ to the right and left, respectively. The sets

D± := {(s, t) ∈ [t0,∞)T × T∗ : δ∓(s, t) ∈ T∗}

are the domains of the shift operator δ±, respectively.
Hereafter, T∗ is the largest subset of the time scale T
such that the shift operators δ± : [t0,∞) × T∗ → T∗

exist.

Definition 2. [23] (Periodicity in shifts δ±) Let T be a
time scale with the shift operators δ± associated with
the initial point t0 ∈ T∗. The time scale T is said to
be periodic in shifts δ± if there exists p ∈ (t0,∞)T∗

such that (p, t) ∈ D± for all t ∈ T∗. Furthermore, if

P := inf{p ∈ (t0,∞)T∗ : (p, t) ∈ δ±,∀t ∈ T∗} ̸= t0,

then P is called the period of the time scale T.

Definition 3. [23] (Periodic function in shifts δ±) Let
T be a time scale that is periodic in shifts δ± with
the period P . We say that a real-valued function f
defined on T∗ is periodic in shifts δ± if there exists ω ∈
[P,∞)T∗ such that (ω, t) ∈ D± and f(δω±(t)) = f(t)
for all t ∈ T∗, where δω± := δ±(ω, t). The smallest
number ω ∈ [P,∞)T∗ is called the period of f .

Definition 4. [23] (∆-periodic function in shifts δ±)
Let T be a time scale that is periodic in shifts δ± with
the period P . We say that a real-valued function f
defined on T∗ is ∆-periodic in shifts δ± if there exists
ω ∈ [P,∞)T∗ such that (ω, t) ∈ D± for all t ∈ T∗,
the shifts δω± are ∆-differentiable with rd-continuous
derivatives and f(δω±(t))δ

∆ω
± (t) = f(t) for all t ∈

T∗, where δω± := δ±(ω, t). The smallest number ω ∈
[P,∞)T∗ is called the period of f .

Lemma 5. [23] δω+(σ(t)) = σ(δω+(t)) and δω−(σ(t))
= σ(δω−(t)) for all t ∈ T∗.

Lemma 6. [20] Let T be a time scale that is peri-
odic in shifts δ± with the period P . Suppose that
the shifts δω± are ∆-differentiable on t ∈ T∗ where
ω ∈ [P,∞)T∗ and p ∈ R is ∆-periodic in shifts δ±
with the period ω. Then

(i) ep(δ
ω
±(t), δ

ω
±(t0)) = ep(t, t0) for t, t0 ∈ T∗;

(ii) ep(δ
ω
±(t), σ(δ

ω
±(s))) = ep(t, σ(s)) =

ep(t,s)
1+µ(t)p(t)

for t, s ∈ T∗.

Lemma 7. [23] Let T be a time scale that is peri-
odic in shifts δ± with the period P , and let f be
a ∆-periodic function in shifts δ± with the period
ω ∈ [P,∞)T∗ . Suppose that f ∈ Crd(T), then∫ t

t0

f(s)∆s =

∫ δω±(t)

δω±(t0)
f(s)∆s.

Lemma 8. [8] Suppose that r is regressive and f :
T → R is rd-continuous. Let t0 ∈ T, y0 ∈ R, then the
unique solution of the initial value problem

y∆ = r(t)y + f(t), y(t0) = y0

is given by

y(t) = er(t, t0)y0 +

∫ t

t0

er(t, σ(τ))f(τ)∆τ.

Set

C0
ω = {x : x ∈ C(T,R), x(δω+(t)) = x(t)}

with the norm defined by |x|0 = sup
t∈[t0,δω+(t0)]T

|x(t)|,

and

C1
ω = {x : x ∈ C1(T,R), x(δω+(t)) = x(t)}

with the norm defined by |x|1 = max{|x|0, |x∆|0}.
Then C0

ω and C1
ω are all Banach spaces.

By using Lemmas 1, 5 and 8, we can obtain the
following lemma.

Lemma 9. x(t) ∈ C1
ω is an ω-periodic solution in

shifts δ± of system (1) if and only if x(t) is an ω-
periodic solution in shifts δ± of

x(t) =

∫ δω+(t)

t
G(t, s)x(s)

[
a(s)x(s)

+

n∑
j=1

bj(s)x(δ−(τj , s))

+

n∑
j=1

cj(s)x
∆(δ−(ξj , s))

]
∆s, (2)

where

G(t, s) =
er(t, σ(s))

1− er(t0, δω+(t0))
.
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It is easy to verify that the Green’s function
G(t, s) satisfies the property

Θ

1−Θ
≤ G(t, s) ≤ 1

1−Θ
,∀s ∈ [t, δω+(t)]T, (3)

where Θ := er(t0, δ
ω
+(t0)). By Lemma 6, we have

G(δω+(t), δ
ω
+(s)) = G(t, s), (4)

where t ∈ T∗, s ∈ [t, δω+(t)]T.
In order to obtain the existence of periodic solu-

tions in shifts δ± of system (1), we first make the fol-
lowing preparations:

Let E be a Banach space and K be a cone in E.
The semi-order induced by the cone K is denoted by
”≤”, that is, x ≤ y if and only if y − x ∈ K. In
addition, for a bounded subset A ⊂ E, let αE(A)
denote the (Kuratowski) measure of non-compactness
defined by

αE(A) = inf
{
d > 0 : there is a finite number of

subsets Ai ⊂ A, such that A =
∪
i

Ai

and diam(Ai) ≤ d
}
,

where diam(Ai) denotes the diameter of the set Ai.
Let E,F be two Banach spaces and D ⊂ E, a

continuous and bounded map Φ : Ω̄ → F is called
k-set contractive if for any bounded set S ⊂ D we
have

αF (Φ(S)) ≤ kαE(S).

Φ is called strict-set-contractive if it is k-set-
contractive for some 0 ≤ k < 1.

Lemma 10. [24, 25] Let K be a cone of the real Ba-
nach space X and Kr,R = {x ∈ K|r ≤ x ≤ R}
with R > r > 0. Suppose that Φ : Kr,R → K is
strict-set-contractive such that one of the following t-
wo conditions is satisfied:

(i) Φx � x, ∀x ∈ K, ||x|| = r and Φx � x, ∀x ∈
K, ||x|| = R.

(ii) Φx � x, ∀x ∈ K, ||x|| = r and Φx � x, ∀x ∈
K, ||x|| = R.

Then Φ has at least one fixed point in Kr,R.

Define K, a cone in C1
ω, by

K = {x ∈ C1
ω : x(t) ≥ Θ|x|1, t ∈ [t0, δ

ω
+(t0)]T},

(5)
and an operator Φ : K → C1

ω by

(Φx)(t) =

∫ δω+(t)

t
G(t, s)x(s)

[
a(s)x(s)

+
n∑

j=1

bj(s)x(δ−(τj , s))

+

n∑
j=1

cj(s)x
∆(δ−(ξj , s))

]
∆s. (6)

In the following, we will give some lemmas con-
cerning K and Φ defined by (5) and (6), respectively.

Lemma 11. Assume that (H1)− (H3) hold.

(i) If rM ≤ 1, then Φ : K → K is well defined.

(ii) If (H4) holds and rM > 1, then Φ : K → K is
well defined.

Proof. For any x ∈ K, it is clear that Φx ∈ C1(T,R).
In view of (6), for t ∈ T, we obtain

(Φx)(δω+(t))

=

∫ δω+(δω+(t))

δω+(t)
G(δω+(t), s)x(s)

[
a(s)x(s)

+
n∑

j=1

bj(s)x(δ−(τj , s))

+
n∑

j=1

cj(s)x
∆(δ−(ξj , s))

]
∆s

=

∫ δω+(t)

t
G(δω+(t), δ

ω
+(u))x(δ

ω
+(u))

×
[
a(δω+(u))δ

∆ω
+ (u)x(δω+(u))

+

n∑
j=1

bj(δ
ω
+(u))δ

∆ω
+ (u)x(δ−(τj , δ

ω
+(u)))

+
n∑

j=1

cj(δ
ω
+(u))δ

∆ω
+ (u)x∆(δ−(ξj , δ

ω
+(u)))

]
∆u

=

∫ δω+(t)

t
G(t, u)x(u)

[
a(u)x(u)

+
n∑

j=1

bj(u)x(δ−(τj , u))

+

n∑
j=1

cj(u)x
∆(δ−(ξj , u))

]
∆u

= (Φx)(t),

that is, (Φx)(δω+(t)) = (Φx)(t), t ∈ T. So Φx ∈ C1
ω.

In view of (H2), for x ∈ K, t ∈ [t0, δ
ω
+(t0)]T, we have

a(t)x(t) +
n∑

j=1

bj(t)x(δ−(τj , t))

+
n∑

j=1

cj(t)x
∆(δ−(ξj , t))
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≥ a(t)x(t) +

n∑
j=1

bj(t)x(δ−(τj , t))

−
n∑

j=1

cj(t)|x∆(δ−(ξj , t))|

≥ Θa(t)|x∆|1 +
n∑

j=1

Θbj(t)|x∆|1

−
n∑

j=1

cj(t)|x∆|1

=

[
Θa(t) +

n∑
j=1

Θbj(t)−
n∑

j=1

cj(t)

]
|x∆|1

≥ 0. (7)

Therefore, for x ∈ K, t ∈ [t0, δ
ω
+(t0)]T, we find

|Φx|0 ≤ 1

1−Θ

∫ δω+(t0)

t0

x(s)

[
a(s)x(s)

+

n∑
j=1

bj(s)x(δ−(τj , s))

+

n∑
j=1

cj(s)x
∆(δ−(ξj , s))

]
∆s

and

(Φx)(t) ≥ Θ

1−Θ

∫ δω+(t)

t
x(s)

[
a(s)x(s)

+

n∑
j=1

bj(s)x(δ−(τj , s))

+

n∑
j=1

cj(s)x
∆(δ−(ξj , s))

]
∆s

=
Θ

1−Θ

∫ δω+(t0)

t0

x(s)

[
a(s)x(s)

+

n∑
j=1

bj(s)x(δ−(τj , s))

+

n∑
j=1

cj(s)x
∆(δ−(ξj , s))

]
∆s

≥ Θ|Φx|0. (8)

Now, we show that (Φx)∆(t) ≥ Θ|Φx|1, t ∈ [t0,
δω+(t0)]T. From (6), we have

(Φx)∆(t)

= G(t, δω+(t))x(δ
ω
+(t))

[
a(δω+(t))δ

∆ω
+ (t)x(δω+(t))

+

n∑
j=1

bj(δ
ω
+(t))δ

∆ω
+ (t)x(δ−(τj , δ

ω
+(t)))

+
n∑

j=1

cj(δ
ω
+(t))δ

∆ω
+ (t)x∆(δ−(ξj , δ

ω
+(t)))

]

−G(t, t)x(t)
[
a(t)x(t) +

n∑
j=1

bj(t)x(δ−(τj , t))

+

n∑
j=1

cj(t)x
∆(δ−(ξj , t))

]
+ r(t)(Φx)(t)

= r(t)(Φx)(t)− x(t)

[
a(t)x(t)

+
n∑

j=1

bj(t)x(δ−(τj , t))

+

n∑
j=1

cj(t)x
∆(δ−(ξj , t))

]
. (9)

It follows from (7) and (9) that if (Φx)∆(t) ≥ 0, then

(Φx)∆(t) ≤ r(t)(Φx)(t) ≤ rM (Φx)(t) ≤ (Φx)(t).
(10)

On the other hand, from (8), (9) and (H3), if (Φx)∆(t)
< 0, then

−(Φx)∆(t)

= x(t)

[
a(t)x(t) +

n∑
j=1

bj(t)x(δ−(τj , t))

+
n∑

j=1

cj(t)x
∆(δ−(ξj , t))

]
− r(t)(Φx)(t)

≤ |x|21
[
a(t) +

n∑
j=1

bj(t) +
n∑

j=1

cj(t)

]
− rm(Φx)(t)

≤ (1 + rm)
Θ2

1−Θ
|x|21

∫ δω+(t0)

t0

[
Θa(s)

+
n∑

j=1

Θbj(s)−
n∑

j=1

cj(s)

]
∆s− rm(Φx)(t)

= (1 + rm)

∫ δω+(t0)

t0

Θ

1−Θ
Θ|x|1

[
Θ|x|1a(s)

+

n∑
j=1

Θ|x|1bj(s)−
n∑

j=1

|x|1cj(s)
]
∆s

−rm(Φx)(t)

≤ (1 + rm)

∫ δω+(t)

t
G(t, s)x(s)

[
a(s)x(s)
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+

n∑
j=1

bj(s)x(δ−(τj , s))

−
n∑

j=1

cj(s)|x∆(δ−(ξj , s))|
]
∆s− rm(Φx)(t)

≤ (1 + rm)

∫ δω+(t)

t
G(t, s)x(s)

[
a(s)x(s)

+
n∑

j=1

bj(s)x(δ−(τj , s))

+

n∑
j=1

cj(s)x
∆(δ−(ξj , s))

]
∆s− rm(Φx)(t)

= (1 + rm)(Φx)(t)− rm(Φx)(t)

= (Φx)(t). (11)

It follows from (10) and (11) that |(Φx)∆|0 ≤ |Φx|0.
So |Φx|1 = |Φx|0. By (8), we have (Φx)(t) ≥
Θ|Φx|1. Hence, Φx ∈ K. The proof of (i) is com-
plete.

(ii) In view of the proof of (i), we only need to
prove that (Φx)∆(t) ≥ 0 implies

(Φx)∆(t) ≤ (Φx)(t).

From (7), (9), (H2) and (H4), we obtain

(Φx)∆(t)

≤ r(t)(Φx)(t)−Θ|x|1
[
a(t)x(t)

+
n∑

j=1

bj(t)x(δ−(τj , t))

−
n∑

j=1

cj(t)|x∆(δ−(ξj , t))|
]

≤ r(t)(Φx)(t)

−Θ|x|21
[
a(t) +

n∑
j=1

bj(t)−
n∑

j=1

cj(t)

]

≤ rM (Φx)(t)−Θ|x|21
rM − 1

Θ(1−Θ)

∫ δω+(t0)

t0

[
a(s)

+

n∑
j=1

bj(s) +

n∑
j=1

cj(s)

]
∆s

≤ rM (Φx)(t)

−(rM − 1)

∫ δω+(t)

t

1

1−Θ
|x|1
[
a(s)|x|1

+
n∑

j=1

bj(s)|x|1 +
n∑

j=1

cj(s)|x|1
]
∆s

≤ rM (Φx)(t)

−(rM − 1)

∫ δω+(t)

t
G(t, s)x(s)

[
a(s)x(s)

+
n∑

j=1

bj(s)x(δ−(τj , s))

+
n∑

j=1

cj(s)|x∆(δ−(ξj , s))|
]
∆s

≤ rM (Φx)(t)

−(rM − 1)

∫ δω+(t)

t
G(t, s)x(s)

[
a(s)x(s)

+

n∑
j=1

bj(s)x(δ−(τj , s))

+

n∑
j=1

cj(s)x
∆(δ−(ξj , s))

]
∆s

= rM (Φx)(t)− (rM − 1)(Φx)(t)

= (Φx)(t).

The proof of (ii) is complete.

Lemma 12. Assume that (H1) − (H3) hold and

R
n∑

j=1
cMj < 1.

(i) If rM ≤ 1, then Φ : K
∩

Ω̄R → K is strict-set-
contractive,

(ii) If (H4) holds and rM > 1, then Φ : K
∩

Ω̄R →
K is strict-set-contractive,

where ΩR = {x ∈ C1
ω : |x|1 < R}.

Proof. We only need to prove (i), since the proof of
(ii) is similar. It is easy to see that Φ is continu-
ous and bounded. Now we prove that αC1

ω
(Φ(S)) ≤(

R
n∑

j=1
cMj

)
αC1

ω
(S) for any bounded set S ⊂ Ω̄R.

Let η = αC1
ω
(S). Then, for any positive number

ε <

(
R

n∑
j=1

cMj

)
η, there is a finite family of subsets

{Si} satisfying S =
∪

i Si with diam(Si) ≤ η + ε.
Therefore

|x− y|1 ≤ η + ε for any x, y ∈ Si. (12)

As S and Si are precompact in C0
ω, it follows that

there is a finite family of subsets {Sij} of Si such that
Si =

∪
j Sij and

|x− y|0 ≤ ε for any x, y ∈ Sij . (13)
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In addition, for any x ∈ S and t ∈ [t0, δ
ω
+(t0)]T, we

have

|(Φx)(t)| =
∫ δω+(t)

t
G(t, s)x(s)

[
a(s)x(s)

+
n∑

j=1

bj(s)x(δ−(τj , s))

+

n∑
j=1

cj(s)x
∆(δ−(ξj , s))

]
∆s

≤ R2

1−Θ

∫ δω+(t0)

t0

[
a(s) +

n∑
j=1

bj(s)

+

n∑
j=1

cj(s)

]
∆s := H

and

|(Φx)∆(t)| =
∣∣∣∣r(t)(Φx)(t)− x(t)

[
a(t)x(t)

+
n∑

j=1

bj(t)x(δ−(τj , t))

+

n∑
j=1

cj(t)x
∆(δ−(ξj , t))

]∣∣∣∣
≤ rMH +R2aM +R2

n∑
j=1

(bMj + cMj ).

Applying the Arzela-Ascoli Theorem, we know
that Φ(S) is precompact in C0

ω. Then, there is a fi-
nite family of subsets {Sijk} of Sij such that Sij =∪

k Sijk and

|Φx− Φy|0 ≤ ε for any x, y ∈ Sijk. (14)

From (7), (9) and (12)-(14) and (H2), for any x, y ∈
Sijk, we obtain

|(Φx)∆ − (Φy)∆|0

= sup
t∈[t0,δω+(t0)]T

{∣∣∣∣r(t)(Φx)(t)− r(t)(Φy)(t)

−x(t)
[
a(t)x(t) +

n∑
j=1

bj(t)x(δ−(τj , t))

+

n∑
j=1

cj(t)x
∆(δ−(ξj , t))

]

+y(t)

[
a(t)y(t) +

n∑
j=1

bj(t)y(δ−(τj , t))

+
n∑

j=1

cj(t)y
∆(δ−(ξj , t))

]∣∣∣∣}

≤ sup
t∈[t0,δω+(t0)]T

{|r(t)[(Φx)(t)− (Φy)(t)]|}

+ sup
t∈[t0,δω+(t0)]T

{∣∣∣∣x(t)[a(t)x(t)
+

n∑
j=1

bj(t)x(δ−(τj , t))

+
n∑

j=1

cj(t)x
∆(δ−(ξj , t))

]

−y(t)
[
a(t)y(t) +

n∑
j=1

bj(t)y(δ−(τj , t))

+

n∑
j=1

cj(t)y
∆(δ−(ξj , t))

]∣∣∣∣}
≤ rM |(Φx)− (Φy)|0

+ sup
t∈[t0,δω+(t0)]T

{∣∣∣∣x(t)[(a(t)x(t)
+

n∑
j=1

bj(t)x(δ−(τj , t))

+
n∑

j=1

cj(t)x
∆(δ−(ξj , t))

)

−
(
a(t)y(t) +

n∑
j=1

bj(t)y(δ−(τj , t))

+

n∑
j=1

cj(t)y
∆(δ−(ξj , t))

)]∣∣∣∣}

+ sup
t∈[t0,δω+(t0)]T

{∣∣∣∣y(t)[a(t)y(t)
+

n∑
j=1

bj(t)y(δ−(τj , t))

+

n∑
j=1

cj(t)y
∆(δ−(ξj , t))

]
[x(t)− y(t)]

∣∣∣∣}

≤ rMε+R sup
t∈[t0,δω+(t0)]T

{
a(t)|x(t)− y(t)|

+

n∑
j=1

bj(t)|x(δ−(τj , t))− y(δ−(τj , t))|

+
n∑

j=1

cj(t)|x∆(δ−(ξj , t))− y∆(δ−(ξj , t))|
}

+ε sup
t∈[t0,δω+(t0)]T

{
a(t)y(t) +

n∑
j=1

bj(t)y(δ−(τj , t))
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+

n∑
j=1

cj(t)|y∆(δ−(ξj , t))|
}

≤ rMε+Rε

(
aM +

n∑
j=1

bMj

)

+R(η + ε)

( n∑
j=1

cMj

)

+Rε

(
aM +

n∑
j=1

bMj +

n∑
j=1

cMj

)

=

(
Rη

n∑
j=1

cMj

)
+ Ĥε, (15)

where Ĥ = rM + 2RaM + 2R
n∑

j=1
bMj + 2R

n∑
j=1

cMj .

From (14) and (15) we have

|Φx− Φy|1 ≤
(
R

n∑
j=1

cMj

)
η + Ĥε,

for any x, y ∈ Sijk. As ε is arbitrary small, it follows
that

αC1
ω
(Φ(S)) ≤

(
R

n∑
j=1

cMj

)
αC1

ω
(S).

Therefore, Φ is strict-set-contractive. The proof is
complete.

3 Main Result

Our main result of this paper is as follows:

Theorem 13. Assume that (H1)− (H3), (H5) hold.

(i) If rM ≤ 1, then system (1) has at least one posi-
tive ω-periodic solution in shifts δ±.

(ii) If (H4) holds and rM > 1, then system (1) has
at least one positive ω-periodic solution in shifts
δ±.

Proof. We only need to prove (i), since the proof of
(ii) is similar. Let R = 1−Θ

Θ2Γ
and 0 < r < Θ(1−Θ)

Π ,
then we have 0 < r < R. From Lemmas 11 and
12, we know that Φ is strict-set-contractive on Kr,R.
In view of (9), we see that if there exists x∗ ∈ K
such that Φx∗ = x∗, then x∗ is one positive ω-periodic
solution in shifts δ± of system (1). Now, we shall
prove that condition (ii) of Lemma 10 holds.

First, we prove that Φx � x, ∀x ∈ K, |x|1 = r.
Otherwise, there exists x ∈ K, |x|1 = r such that

Φx ≥ x. So |x| > 0 and Φx− x ∈ K, which implies
that

(Φx)(t)− x(t) ≥ Θ|Φx− x|1 ≥ 0, (16)

for any t ∈ [t0, δ
ω
+(t0)]T.

Moreover, for t ∈ [t0, δ
ω
+(t0)]T, we have

(Φx)(t) =

∫ δω+(t)

t
G(t, s)x(s)

[
a(s)x(s)

+

n∑
j=1

bj(s)x(δ−(τj , s))

+
n∑

j=1

cj(s)x
∆(δ−(ξj , s))

]
∆s

≤ 1

1−Θ
r|x|0

∫ δω+(t0)

t0

[
a(s) +

n∑
j=1

bj(s)

+

n∑
j=1

cj(s)

]
∆s

=
r

1−Θ
Π|x|0

< Θ|x|0. (17)

In view of (16) and (17), we have

|x|0 ≤ |Φx| < Θ|x|0 < |x|0,

which is a contradiction. Finally, we prove that Φx �
x, ∀x ∈ K, |x|1 = R also holds. For this case, we
only need to prove that

Φx ≮ x x ∈ K, |x|1 = R.

Suppose, for the sake of contradiction, that there ex-
ists x ∈ K and |x|1 = R such that Φx < x.
Thus x − Φx ∈ K \ {0}. Furthermore, for any
t ∈ [t0, δ

ω
+(t0)]T, we have

x(t)− (Φx)(t) ≥ Θ|x− Φx|1 > 0. (18)

In addition, for any t ∈ [t0, δ
ω
+(t0)]T, we find

(Φx)(t) =

∫ δω+(t)

t
G(t, s)x(s)

[
a(s)x(s)

+
n∑

j=1

bj(s)x(δ−(τj , s))

+

n∑
j=1

cj(s)x
∆(δ−(ξj , s))

]
∆s

≥ Θ

1−Θ
Θ|x|21

∫ δω+(t0)

t0

[
Θa(s)

+
n∑

j=1

Θbj(s)−
n∑

j=1

cj(s)

]
∆s
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=
Θ2

1−Θ
ΓR2

= R. (19)

From (18) and (19), we obtain

|x| > |Φx|0 ≥ R,

which is a contradiction. Therefore, conditions (i) and
(ii) hold. By Lemma 10, we see that Φ has at least one
nonzero fixed point in K. Therefore, system (1) has
at least one positive ω-periodic solution in shifts δ±.
The proof is complete.

4 Numerical examples

Example 1. Consider the following system on time
scales

x∆(t) = x(t)

[
2 + cosπt

8
− (5− 2 sinπt)x(t)

−(2 + sinπt)x(δ−(2, t))

−1− cosπt

20
x∆(δ−(2, t))

]
. (20)

Obviously,

r =
2 + cosπt

8
, a = 5− 2 sinπt,

b1 = 2 + sinπt, c1 =
1− cosπt

20
.

Let T = R, t0 = 0, then δω+(t) = t + 2. It is
easy to verify r(t), a(t), b1(t), c1(t) are ∆-periodic in
shifts δ± with period ω = 2. By a direct calculation,
we can get

Θ = e−
1
2 , Γ = 8.3914,

inf
t∈[0,2]T

{Θa(t) + Θb1(t)− c1(t)} = 2.3261,

sup
t∈[0,2]T

{a(t) + b1(t) + c1(t)} = 8.0512,

(1 + rm)
Θ2

1−Θ
Γ = 8.8264,

and
1−Θ

Θ2Γ
cM1 = 0.0128.

Hence, (H1)−(H3), (H5) hold and rM ≤ 1. Accord-
ing to Theorem 13, when T = R, system (20) has at
least one positive 2-periodic solution in shifts δ±.

Example 2. Consider the following system on time
scales

x∆(t) = x(t)

[
1

5t
− 2

t
x(t)− 3

t
x(δ−(4, t))

− 1

20t
x∆(δ−(4, t))

]
. (21)

Obviously,

r =
1

5t
, a =

2

t
, b1 =

3

t
, c1 =

1

20t
.

Let T = 2N0 , t0 = 1, then δω+(t) = 4t. It is
easy to verify r(t), a(t), b1(t), c1(t) are ∆-periodic in
shifts δ± with period ω = 4. By a direct calculation,
we can get

Θ = 0.6818, Γ = 4.6566,

inf
t∈[1,4]T

{Θa(t) + Θb1(t)− c1(t)} = 0.8022,

sup
t∈[1,4]T

{a(t) + b1(t) + c1(t)} = 5.0500,

(1 + rm)
Θ2

1−Θ
Γ = 7.1429,

and
1−Θ

Θ2Γ
cM1 = 0.0073.

Hence, (H1)−(H3), (H5) hold and rM ≤ 1. Accord-
ing to Theorem 13, when T = 2N0 , system (21) has at
least one positive 4-periodic solution in shifts δ±.

5 Conclusion

This paper is concerned with the existence of positive
periodic solutions in shifts δ± for a neutral delay lo-
gistic equation on time scales. Based on the theory
of calculus on time scales, by using a fixed point the-
orem of strict-set-contraction, some existence results
are established for the system.

The method used in this paper is the same in [3],
but the results obtained in this paper extend and unify
periodic differential, difference, h-difference and q-
difference equations and more by a new periodicity
concept on time scales.
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